- > SSAC New Syllabus
- Course No: AS-SS 111
- Semester: I (New)

Title: Principles of Soil Science Credits: 2 (1+1)

Teaching Schedule – Theory with weightages %

Lecture No.	Topics	Weightage marks
1	Nature and origin of soil, soil forming rocks, minerals and their classification and composition	05
2-3	Soil forming factors and processes, Soil classification, soil taxonomy orders and soils of Maharashtra	10
4	Soil physical properties, importance, soil particle distribution soil structure, bulk density, particle density, porosity soil consistency, soil colour, COLE value, infiltration rate, hydraulic conductivity, permeability, soil strength.	15
5	Soil inorganic colloids, properties of soil colloids, soil their composition, properties and origin of charge	06
6	Ion exchange in soil and nutrient availability	08
7-8	Soil organic matter, its composition, decomposition and their effect on soil properties	10
9	Soil reaction and its significance	05
10-11	Salt affected soil, Acid Soil and their characteristics and reclamation	10
12	Quality of irrigation water, characteristics and suitability	07
13	Essential plant nutrients and their function, Jamponance of soil testing	08
14	Deficiency symptoms of nutrients in crop plants.	06
15-16	Types and importance of inorganic fertilizer and their reaction in soil, types of organic manures and their composition	10
	Total	100

Practical Exercises

Exercises No.	Торіс
1.	Preparation of standard solutions and reagents
2.	Identification of rocks and minerals
3.	Study of soil profile
4.	Determination of bulk density, particle density and porosity of soil
5.	Determination of pH and EC of the soil
6.	Determination of soil texture
7.	Determination of water holding capacity of soil (1/3 and 15 bar)
8.	Determination of calcium carbonate and organic carbon content of soil
9.	Determination of available nitrogen and potassium from soil
10.	Determination of available phosphorus from soil
11.	Analysis of irrigation water for pH, EC, cations and anions
12.	Determination of aggregate stability by Yoders apparatus
13.	Determination of organic carbon from soil
14.	Determination of gypsum/ lime requirement of soil
15.	Determination of soil strength, COLE value, soil compaction
16.	Interpretation of soil and water analytical data

Course No.	:	REE 111	Course Title	:	Engineering Chemistry
Semester	:	I(NEW)	Credits	:	2(1+1

Teaching Schedule

Lect	Topics to be covered	Book No	Chapter No	Article no	Page
No	_				no
1	Fuels: classification. Calorific	1	2		
	value.			2.1	73
	Fuel –definition			2.2	73
	Classification of fuels			2.3	74
	Calorific value			2.4	75
	Characteristics of a good fuel			2.5	75-76
	Comparison between solid, liquid				
	and gaseous fuels.			2.9 -2.10	81
	Solid fuels: wood , coal				
2-3	Classification of coal by rank	1	2	2.11	
	Peat, Lignite, Bituminous,				81-82
	Anthracite			2.13	84-86
	Analysis of coal				118-
	Solved ProblemNo.9				119
	Unsolved problems No. 24 &25			2.6	131
	Gross and Net calorific Value			2.6	78-80

	Determination of CV by Bomb				76-79
	Calorimeter			2.8	
	Theoretical calculations of CV of a				80
	fuel				
	Solved problems No. 1-5				128
	Un-solved Problems				128-
	No.1,3,4,7,22,23				130
4	Liquid fuels	1	2		
	Petroleum Classification of			2.18	91
	Petroleum			2.18	91
	Origin of Petroleum(modern				92
	theory only)				92
	Refining of crude oil				93-95
	Cracking-thermal cracking.				
5-6	Gaseous fuel(Definition,	1	2		
	composition and uses only)				
	Natural gas			2.28	106
	Coal gas				
	Oil gas			2.28	106
	Producer gas			2.29	106
	Water gas			2.30	107
	Bio gas			2.31	108
	Determination of CV of gas by			2.32	109
	Junkers gas Calorimeter			2.33	110
	Flue gas analysis by Orsat's			2.36	113
	apparatus				113-
					115

7-9	Corrosion: causes, types and	1	6		
	method of prevention.				
	Introduction: Definition			6.1	351
	Gravity of corrosion problems				351-
	Dry or chemical corrosion			6.2	352
	(Definition only)			6.3	352
	Wet or electrochemical corrosion			6.5	353
	Galvanic corrosion			6.6	357
	Concentration cell corrosion			6.7	358
	Passivity				360
10-	Underground or soil corrosion	1	6	6.8	360
11	Pitting corrosion			6.9	361
	Inter granular corrosion			6.10	361
	Waterline corrosion			6.11	362
	Stress corrosion			6.12	363
	Microbiological corrosion			6.13	364

				C 1 4	265
	Erosion corrosion			6.14	365
	Corrosion control(protection			6.17	369-
	against corrosion) methods in short				374
12	Water: temporary and	1	1		
	permanent hardness.				
	disadvantages of hard water,				
	scale and sludge formation in				
	boilers, boiler corrosion.			1.5	4-5
	Hardness of water: temporary &				
	permanent			1.6	5
	Disadvantages of hard water				
	Scale and sludge formation in			1.7	6
	boilers			1.7	6
	Disadvantages of sludge formation			1.7	7
	Disadvantages of scale formation			1.9	10-11
	Boiler corrosion				
13-	Lubricants: properties.	1	18		
14	mechanism. classification and				
	tests.			18.2	721
	Lubricants				721
	Functions of lubricants			18.3	721-
	Mechanism of lubrication			18.4	723
	Classification of lubricants			18.5	723
	Lubricating oils				723
15-	Greases or semi –solid lubricants	1	18	18.6	726
16	Solid lubricants			18.7	727
	Properties of lubricating oils			18.10	729-
	Viscosity, Viscosity Index, Flash				733
	& Fire point, Oiliness			18.10	
	Cloud and pour point, Emulsion,				733-
	Volatility, Carbon residue etc.				737
	Solved examples(1,2 &3)				
	Unsolved examples(1,2&3)				741
					742
					/+2

Practical Exercise:

1) Determination of viscosity of oil:

Course No: AS-AGRO 121

Title: Principles of Agronomy

Semester:II

- Credit: 2 (1+1)
- 2) Estimation of alkalinity of water sample:
- 3) Determination of carbonate and non- carbonate hardness by soda reagent:
- 4) Determination of coagulation of water and chloride ion content:
- 5) Determination of specific rotation of an optically active compound:
- 6) Determination of Xnax and verification of Beer Lambert Law:
- 7) Determination of calorific value of gaseous fuel:
- 8) Determination of various properties of water: Hardness/TDS,Na,Cl.MgCO₃,Ph
- 9) Ulltimate analysis of selected biomass
- 10) Proximate analysis of selected biomass
- 11) Determination of Fire point and Flash point of liquid fuel

12)

13) Teaching Schedule – Theory with weightages %

Lecture No.	Topic to be covered	Weightages (%)
1-2	Scope of agronomy in relation to agricultural engineering. Classification of crops	09
3-4	Effect of different weather parameters on crop growth and development.	06
5-6	Principles of tillage, tilth and its characteristics.	06
7-10	Crop seasons. Methods, time and depth of sowing of major field crops (Cereals: paddy, sorghum, maize, pearlmillet, wheat, Pulses: green gram, black gram, pigeonpea, chickpea Oilseeds: groundnut, soybean, sunflower, safflower Cash crop: cotton, sugarcane).	48
11-12	Methods and time of application of manures and fertilizers.	09
13-14	Organic farming; principle, concept.	13
15-16	Sustainable agriculture; definition, principle, concept, components.	09
	Total	100

14)

15) Practical Exercises

Ex. No.	Торіс
1	Identification of crops plant and seed at different growth stages
2	Identification of important varieties of cereal and pulses crops
3	Identification of important varieties of oil seeds and cash crops

4	Study of manures, fertilizers and Fertilizer application methods
5	Practices of fertilizer application to different field crops
6	Calculations of plant population, seed rate and fertilizers doses.
7	Identification of weeds; Different weed control methods; calculation doses of different herbicides.
8	Study of primary tillage implements,.
9	Study of Practice of ploughing
10	Study of puddling implements and practices of puddling in rice
11	Study of different methods of sowing of field crops.
12	Study of different inter cultural implements and working with them.
13	Practice of interculture operation in different field crops
14	Signs of maturity of important field crops
15	Harvesting and threshing of cereals, pulses, oil seeds and cash crops.
 10	

Course Title :Soil, Water and Plant

Semester : II(NEW)

16)

17)

18) Course No. : (SSAC -122)

Analysis

19) **Credit** :1+1=2

20)

21)

22) Teaching Schedule- Theory with weightages (%):

Lecture No.	Торіс	Weightage%
1 & 2	Importance and objectives of soil, water and plant analysis	
	Principles of instrumentation in soil, water and plant analysis	10
3	Methods of soil, water and plant sampling and processing for	
	analysis	7.5
4	Nutrient mobility, diffusion and mass flow	7.5
5	Renewal of gases in soil and their abundance	5
6	Principles and methods of measurement of oxygen diffusion rate	
	and redox potential	7.5
7 & 8	Radio tracer technology application in plant nutrient studies and	
	fertility evaluation	10
9	Soil micro-organisms and their importance	5
10	Saline and alkali appraisal and management	5
11	Acid soil appraisal and management	5
12	Waterlogged soil appraisal and management	5
13	Sandy soil appraisal and management	5
14	Chemical and mineral composition of horticultural crops	7.5

15	Leaf analysis standards, index tissue, interpretation of leaf	
	analysis values Rapid tissue test for plant	10
16	Management of poor quality irrigation water in crop management	
	Soil pollution and water pollution	10

23)

24) Practical Exercises:

Exercise	Title
<u>No.</u> 1	Collection and propagation of acil, water and plant, samples for analysis
-	Collection and preparation of soil, water and plant samples for analysis
2	Preparation of standard solutions
3	Determination of pH and EC of soil
4	Determination of SAR and ESP of soil
5	Estimation of moisture content in soils and plants
6	Determination of available nitrogen in soil
7	Determination of available phosphorus in soil
8	Determination of available potassium in soil
8	Determination of DTPA extractable micronutrients in soil
10	Determination of boron
11	Determination of pH and EC in irrigation water samples
12	Determination of Carbonates , bicarbonates sulphates and chlorides in irrigation water
13	Determination of calcium, magnesium, sodium, potassium and Boron in irrigation water
14	Determination of NPK calcium, magnesium and sulphur in plant sample
15	Determination of micronutrients in plant sample
16	Preparation of plant nutrient deficiency symptoms album

25)

- 26) OLD SYLLABUS
- 27) Course no: AG-124

Title: Soil Science

28) Sem: II (OLD)

Credit: 2 (1+1)

29) Theory:

30) Definition of Soil. Rocks and minerals Soil formation, and classification. Soil survey methods. Land use capability and mapping. Major soil types of India, soil texture, classification of soil partials and their properties, bulk density, particle density and porosity, soil structure, types of soil structure and management farms of soil water, retention and movement, saturated and unsaturated flow, soil moisture constants. Soil temperature and soil air. Soil colloids, cation and anion exchange in soils, soil reactions and buffering capacity. Soil humus and its formation, C:N ratio. Acid, Saline and alkali

soils and their reclamation. Significance of macro and micro nutrients Soil and Water testing. Important fertilizer and fertilizer recommendations.

31) Practicals

32) Study of soil profiles. Identification of different soil types. Mechanical analysis of soil. Determination of of bulk density and particle density of soil. Determination of cation exchange capacity of soil. Chemical analysis of soil i.e. EC. pH. ESP. Determination of sod moisture constants. Determination of NPK in the soils Analysis of irrigation water for SAR, EC, carbonate and bicarbonate Determination of soil organic matter. Determination of liquid and plastic limits. Determination of gypsum requirement of soil., Interpretation of soil and water test data.

33)

Title: Engineering Chemistry	Semester: I (OLD)
Course No: EOES 111	Credits: 2(1+1)

34)

35) Theory:

36) Phase rule and its application to one and two component systems. Fuels: classification, calorific value. Colloids: classification, properties. Corrosion: Definition of all type of causes corrosion, types and method of prevention. Corrosion control, Water: temporary and permanent hardness, disadvantages of hard water, scale and sludge formation in boilers, boiler corrosion. Lubricants: properties, mechanism, classification and tests. Polymers. Types of polymerization, properties, uses and methods for the determination of molecular weight of polymers.

37)

38)

39) Practicals:

40) **D**etermination of temporary and permanent hardness of water by EDTA method, Estimation of chloride in water ,Estimation of dissolved oxygen in water , Determination of BOD in water sample ,Determination of COD in water sample ; Estimation of available chlorine in bleaching powder, Determination of viscosity of oil, Estimation of alkalinity of water sample, Determination of calorific value of solid fuel, Determination of calorific value of gaseous fuel.